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Abstract

This paper presents a theoretical and experimental investigation into an active vibration isolation
system. Electromagnetic actuators are installed in parallel with each of four passive mounts, which
are placed between a flexible equipment structure and a base structure which is either flexible or rigid.
Isolation of low-frequency vibration is studied, so that the passive mounts can be modelled as
lumped parameter springs and dampers. Decentralized velocity feedback control is employed, where
each actuator is operated independently by feeding back the absolute equipment velocity at the
same location. Good control and robust stability have been obtained both theoretically and experimentally
for the multichannel control systems. This is to be expected if the base structure is rigid, in which case
the actuator and sensor are, in principle, collocated and the control system implements a skyhook
damper. With a flexible base structure, however, collocation is lost due to the reactive actuator force acting
on the base structure, but the control system is still found to be robustly stable and to perform well.
Attenuations of 20 dB are obtained in the sum of squared velocities on the equipment structure at the rigid-
body mounted resonance frequencies. In addition, attenuations of up to 15 dB are obtained at the
resonance frequencies of both the low order flexible modes of the base structure and the equipment
structure.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Isolating a piece of delicate equipment from the vibration of a base structure is of practical
importance in a number of engineering fields. Examples are the isolation of instrument boxes in
aeroplanes and the isolation of telescopes and antennas in satellites. In the majority of cases, the
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base is flexible and vibrates with an unpredictable waveform which has a broadband spectrum.
The active isolation of a vibration-sensitive equipment structure from a vibrating base is studied
in this paper. Passive anti-vibration mounts are widely used to support the equipment and protect
it from severe base vibration. However, conventional passive mounts suffer from an inherent
trade-off between poor high-frequency isolation and amplification of vibration at the fundamental
mounted resonance frequency [1]. Generally, the best isolation performance is achieved by using
an active system in combination with a passive mount, where the fundamental resonance can be
actively controlled without reducing the high-frequency performance.
When an active isolator is designed, two configurations are possible. The secondary

actuator can be placed either in series or in parallel with the passive mount. Beard et al. [2]
investigated the first configuration by coupling a piezoelectric actuator in series with a passive
mount. However, the effectiveness of such a mounting design was shown to be heavily dependent
upon the high stiffness of the actuators. Due to the small deflection capacity of piezoelectric
actuators, the use of such actuation is limited to the isolation of very small amplitude motion
of base structure. In many situations, the base vibration is of the order of millimetres. As a
result, an actuator with a longer throw, such as electromagnetic shaker, is required. An
experimental study was conducted by Serrand and Elliott [3] on the active vibration isolation of a
rigid equipment structure using two electromagnetic shakers, which were installed in parallel with
two passive mounts. An active isolator can be implemented using various feedback control
strategies, among which independent velocity feedback control is one of the most popular. The
absolute velocities of the equipment structure are measured at each mounting point and directly
fed back to the actuators driving that point. Using independent velocity feedback control, Kim
et al. [4] investigated a four-mount active vibration isolation system with a rigid equipment
structure.
This paper investigates a similar four-mount system for active vibration isolation of a flexible

equipment structure. Particular emphasis is placed on the isolation of low-frequency vibration
(0–200Hz), for which the mounts can be assumed to behave as lumped springs and dampers.
The main objective is to investigate the control performance and stability issues associated
with the four-mount vibration isolation system when the additional flexibility of the
equipment structure is introduced. Active isolation experiments are first implemented on a
rigid base before moving to the final flexible base, in order to have a full understanding of the
control mechanisms. With the rigid base structure, the actuator force that reacts off the base
has no effect on the equipment velocity and so the actuator force on the equipment and
velocity sensor on the equipment are, in principle, collocated. It can be shown that under
these conditions the control system is unconditionally stable. When the base structure is not
rigid; however, the stability of the control system cannot be guaranteed a priori, because
the equipment velocity is caused by both the actuator force acting directly on the equipment
and the reactive actuator force causing the base to move, but a careful analysis has
demonstrated that good stability properties are still obtained for the experiments described
here. A theoretical model is derived for the dynamic response of the coupled system in
Section 2. Section 3 is concerned with the stability of the controller and the practical
implementation is described in Section 4. The performance of the control system with both the
rigid and flexible base structure is discussed in Section 5 and in Section 6 the conclusions are
summarized.
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2. Theoretical analysis of the mounted active isolation structure

2.1. Single-mount active isolation system

Kim et al. [4] presented a simple model for the active vibration isolation of a single-mount
system with a rigid equipment structure using the impedance method. This model is extended to
study the active vibration isolation of a flexible equipment structure. Fig. 1(a) shows a one-
dimensional mounted equipment structure, where the flexible equipment is supported by a passive
mount consisting of a spring km and a damper cm: The actuator, which generates a control force,
fc, is installed in parallel with the isolation system. In the practical implementation described
below, the body of the actuator is mounted on the equipment structure and is arranged to drive
through the passive mount. The mass of the actuator, ma, thus has to be included in the model as
shown in Fig. 1. The whole system on a general base structure can be represented in terms of
mechanical impedance as shown in Fig. 1(b), where Za, Ze, Zm and Zb denote the impedances of
the actuator, flexible equipment, mount and the base structure, respectively. Compared to the
electromagnetic shaker and the equipment, the mount is assumed to be massless in the frequency
range of interest. For the convenience of the theoretical analysis, no time delay is assumed in the
electric controller. The flexible base structure is excited by a primary force fpb, and vibrates with a
base velocity vb, while fpe denotes the excitation force acting on the equipment structure. Letting
fm denote the force acting through the mount on the equipment structure, the dynamics of the
flexible equipment and the base structure are described by

ðZe þ ZaÞve ¼ fc þ fm þ fpe; ð1Þ

fm ¼ Zmðvb � veÞ; ð2Þ

Zbvb ¼ fpb � fm � fc: ð3Þ

It is noted that in this one-dimensional analysis, the moment of inertia of the actuator cannot be
taken into account. The impedances of the flexible equipment and the flexible base are obtained
by inverting the corresponding mobilities Ye and Yb; while Za ¼ joma and Zm ¼ ðcm þ km=joÞ;
where j ¼

ffiffiffiffiffiffiffi
�1

p
: Combining Eqs (1)–(3), the dynamics of the system can be described in a
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Fig. 1. Single-mount active vibration isolation system on a flexible base structure.
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compact matrix form as follows:

Ze þ Za þ Zm �Zm

�Zm Zb þ Zm

" #
ve

vb

( )
¼

fpe þ fc

fpb � fc

( )
: ð4Þ

Because the passive system is stable, the velocity responses can be obtained by inverting the
impedance matrix in Eq. (4). In this paper, the control system employs the direct velocity feedback
control strategy using the measured velocity signal ve from the equipment structure to activate the
actuator with a constant gain of �h: At low frequencies, the control force generated from the
actuator is approximately proportional to the input velocity signal, i.e., fc ¼ �hve: Thus, Eq. (4)
becomes

Ze þ Za þ Zm þ h �Zm

�ðZm þ hÞ Zb þ Zm

" #
ve

vb

( )
¼

fpe

fpb

( )
: ð5Þ

For a special case of a rigid base structure, Zb-N and vb-0; so that fpb does not have any effect
on the equipment structure. Therefore, the response of a flexible equipment structure on a rigid
base to an excitation force acting on the equipment can be easily obtained from Eq. (5),

ðZe þ Za þ Zm þ hÞve ¼ fpe: ð6Þ

2.2. Multiple-mount active isolation system

The impedance representation of a single-mount flexible equipment structure can be generalized
for the case where the flexible equipment structure is supported by a set of mounts as shown in
Fig. 2. Without losing generality, the number of mounts under consideration is taken to be M,
and the total number of modes in the flexible equipment structure is N. Since M mounts are used,

Flexible 
equipment 
(N modes ) 

M mounts

Flexible base
(L modes ) 

vb

fc

ve

fpbZb

Zm

Ze+Za
fpe

fm

Fig. 2. Impedance representation of a multi-mount vibration isolation system.
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the end velocities at the mount positions are denoted as M length vectors ve and vb, at the flexible
equipment and the flexible base structure respectively. Each mount has an actuator in parallel
with it, providing an M length of secondary force vector fc. When the flexible base structure is
excited at a number of arbitrary points by a primary force vector fb, the flexible base response can
be described as

Zbvb ¼ fpb � fm � fc; ð7Þ

where fpb ¼ ZbYbpfb is the equivalent vector of primary forces at the mount positions giving that
Ybp is the mobility matrix of the uncoupled flexible base due to the vector fb of forces acting on the
base. By extending the Eqs. (1) and (2), combining with Eq. (7), the dynamic behaviour of the
multi-mount active vibration isolation system with a flexible equipment structure on a flexible
base can be described in matrix form as follows:

Ze þ Za þ Zm �Zm

�Zm Zb þ Zm

" #
ve

vb

( )
¼

fpe þ fc

fpb � fc

( )
: ð8Þ

The impedance matrices Za and Zm are ðM � MÞ diagonal matrixes, whose elements are the
impedances due to the mass of each actuator, and the stiffness and damping of the corresponding
mount, respectively. The impedance matrices Ze and Zb are determined from their corresponding
mobility matrices Ye and Yb.
Using decentralized velocity feedback control, each actuator is operated independently by

feeding back the equipment absolute velocity with the same gain at each mount location. The
control force vector fc generated by the multiple actuators is then given by

fc ¼ �Hve; ð9Þ

where the control gain matrix H is diagonal. The system response of the multi-mount flexible
equipment structure on a flexible base is obtained by substituting Eq. (9) into Eq. (8),

Ze þ Za þ Zm þH �Zm

�ðHþ ZmÞ Zb þ Zm

" #
ve

vb

( )
¼

fpe

fpb

( )
: ð10Þ

In a similar manner to Eq. (6), the multi-mount flexible equipment structure on a rigid base can
then be described by

ðZe þ Za þ Zm þHÞve ¼ fpe: ð11Þ

Conventionally, control performance is discussed in terms of transmissibility, which is defined by
ve=vb for a single-mount active isolation system. However, the dynamic behaviour of the mounted
flexible equipment structure is strongly coupled with the dynamics of the flexible base as can be
seen from Eqs. (5) and (10). In this case, the velocity of the base structure changes with the control
gain. Therefore, the transmissibility does not represent the absolute vibration response of the
flexible equipment. It is thus preferable to use the absolute velocity of the flexible equipment
structure as a control performance measure. The kinetic energy of the equipment structure has
been suggested as a good measure of control performance when the equipment structure is rigid
[4]. Considering the flexibility of the equipment studied, the true value of the kinetic energy will
have components due to both the rigid-body modes and the flexible modes. An approximate
estimate of the equipment kinetic energy can be obtained by taking the sum of squared values of
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the equipment velocities at the mount locations, and this is used as a practical measure of control
performance in this paper. This also means that the theoretical predictions can be easily compared
with the experimental results.

3. Stability analysis

Let the matrix of frequency response functions between the actuator inputs, fc, and the
sensor outputs, ve, be denoted GðjoÞ; which in control terms is known as the plant response matrix
[5]. The block diagram of the feedback control system can then be drawn as in Fig. 3, where d is
the vector of the sensor outputs due to the primary inputs acting alone, which acts as the
disturbance on the system, and HðjoÞ is the diagonal matrix of constant feedback gain h in
this case, i.e.,

HðjoÞ ¼ hI; ð12Þ

where I is the identity matrix.
If the feedback control system is stable, the closed-loop output of the sensors is given by

ve ¼ ½IþGðjoÞHðjoÞ��1d: ð13Þ

However, before this formula can be used to predict the performance of the control system, the
stability of the multichannel feedback control system must be assured. This can be determined
from the eigenvalues of the open-loop frequency response matrix, LðjoÞ ¼ GðjoÞHðjoÞ; using the
generalised Nyquist criterion [5]. This states that, the control system is stable provided none of the
loci of the eigenvalues encircles the ð�1; 0Þ point in the complex plane as o varies from �N toN:
In the case in which the base structure is rigid and decentralized feedback control is used, then

LðjoÞ ¼ hGðjoÞ; ð14Þ

where GðjoÞ corresponds to the mobility matrix for a set of collocated force actuators and velocity
sensors acting on the mounted equipment structure. The power supplied to this structure by the
actuators is then equal to

P ¼ 1
2
Re½fHc ve� ¼ 1

2
Re½fHc GðjoÞfc�: ð15Þ

d

-H ( jω)

G ( jω) ve
fc ++

Primary 
disturbances

Feedback 
gain matrix

Matrix of the 
plant responses

Fig. 3. Equivalent block diagram for a velocity feedback control system.
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The plant response matrix is symmetrical in this case, due to reciprocity, and so the power
supplied can also be written as

P ¼ 1
2
fHc Re½GðjoÞ�fc ð16Þ

which is only guaranteed positive if Re½GðjoÞ� is positive definite and so GðjoÞ is passive. In
this case the real parts of all the eigenvalues of GðjoÞ must also be positive and so the locus
of each of the eigenvalues of LðjoÞ in this case are guaranteed to be on the right-hand side of the
Nyquist plane. None of these loci can thus encircle the ð�1; 0Þ point and the system is
unconditional stable.
This unconditional stability is not guaranteed when the base is flexible, however, because

in this case ve is not just as a result of the collocated actuator force at the top of the mount,
but also has a component due to the reaction of the actuator force on the base structure.
This reaction force causes base vibrations, which are transmitted to the equipment structure
through the mounts. The plant response matrix thus does not correspond to the mobility matrix
for a set of collocated forces and velocities, and its real part cannot be guaranteed to be
positive definite.

4. Experimental investigation of the active vibration isolation

4.1. System description

A four-mount active vibration isolation system is built as illustrated in Fig. 4, and consists of a
flexible equipment plate mounted on a base structure, which can either be rigid or flexible,
through four anti-vibration mounts. The equipment structure consists of a 3.54mm thick
aluminium plate of dimensions 300� 160mm2, which when loaded with the masses of the
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Fig. 4. A four-mount active isolator for a flexible equipment structure.
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actuators (0.91 kg each) is very flexible in the frequency range of interest. This flexible equipment
structure together with the passive and active isolator is referred to as the mounted equipment
structure in this paper. The passive mounts are made of natural rubber with a hollow cylindrical
shape, and are bonded to the corners of the equipment plate via steel washers. Four
electromagnetic shakers are rigidly installed on the top of the equipment plate at the
corresponding mount positions by a set of bolts. A thin steel stinger inside each ring mount
transmits the axial force generated by the control shakers to the supporting base via an aluminium
disc, so that the control force can act in parallel with the passive isolator. The assembly at one
corner of the mounted equipment structure is illustrated schematically in Fig. 5. The mounted
equipment structure is first installed on a rigid base structure to identify its uncoupled dynamic
characteristics before being moved to a flexible base. A thick steel plate with a large mass is
used as the rigid base. For the flexible base, a thin steel rectangular plate of 2mm thickness is
used with its two long opposite edges bolted on to stiff frames, which has sufficient stiffness to
support the mounted equipment structure. The other two edges of the flexible base structure
remain free, which approximately realises a clamped–free–clamped–free boundary condition as
defined by Warburton [6]. The control force generated from the shaker is proportional to the
shaker current and thus to the shaker voltage, which is proportional to the input velocity signal.
The calibration factors (force/voltage) for the shakers are determined, together with those of the
sensors used (voltage/velocity) in order to be able to compare the absolute levels of the
measurements taken from the experiments with the theoretical model. The physical and
geometrical properties of the experimental set-up, as well as the locations of the mounts, are listed
in Table 1.
In the experimental work, an FFT Analyzer (Advantest R9211C) is used to measure the

velocity response of the equipment as well as generate the white-noise signal. When the mounted
flexible equipment structure is excited, the acceleration signals at each mount location are
measured using accelerometers (B&K type 4375). The acceleration signal is then passed to a
general signal conditioner (B&K type 2635), which converts it to a velocity signal by an integrated
module inside. Finally, each velocity signal is independently fed back to the corresponding
actuator to implement decentralized feedback control. The velocity signals are also captured by
the analyzer, so that the measured frequency responses can be compared with the predicted results
to validate the theoretical model outlined in Section 2.

Fig. 5. Assembly at the corner of the mounted equipment structure.
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4.2. Model validation

The active vibration isolation system used in the experiment was simulated using the theoretical
model outlined in Section 2. The stiffness and damping properties of the passive mounts were
chosen in order to best fit the measured fundamental natural frequency and bandwidth. In order
to match the frequency of the measured first flexible resonance of the plant response, the thickness
of the flexible equipment plate in the theoretical model was set to be 2.9mm instead of
3.54mm.This lowers the frequency of the first flexible mode of the active isolator and is thought to
compensate for the frequency lowering effect of the rotational moments of inertia of the shakers
in the experimental arrangement, which were not accounted for in the theoretical model.
The theoretical plant responses are calculated when the mounted equipment structure is

installed on both a rigid and a flexible base structure. For validation purposes, the experimental
(solid line) and simulation (dashed line) results are shown together in Fig. 6 for the plant response
G11 at mount 1, which is the (1,1) element of the plant matrix G(jo). The theoretical result
matches reasonably well with the experimental one for a rigid base case as shown in Table 2. The
experimental results below 5Hz have low coherence due to the low sensitivity of the actuator and
sensor used, and result in some discrepancies from the predictions. On a rigid base as shown in
Fig. 6(a), the predicted resonance frequencies of the three rigid-body modes (heave motion at
17.40Hz, pitch motion at 17.78Hz and roll motion at 17.43Hz) are so close that they merge into
one large peak, which is in accordance with the measured results from the experiment. The
frequency of the first flexible mode of the mounted flexible equipment structure is predicted to be

Table 1

Physical properties and geometrical data of the active isolation system

Equipment Material of the flexible equipment plate Aluminium

structure Density of the flexible equipment plate 2700 kg/m3

Me, Mass of the flexible equipment plate 0.3564 kg

Young’s modulus 7:1� 1010 N/m2

The Poisson ratio 0.33

Damping ratio ze ¼ 0:01
Dimensions of the flexible equipment plate (mm) ðLex � Ley � teÞ ð160� 300� 3:54Þ

Mount km, Spring stiffness of each mount 1:2� 104 N/m
cm, Damping of each mount 11.5N s/m

Mount locations on the flexible equipment (mm) ly ¼ 117; lf ¼ 47

Base plate Material Steel

Dimensions of the flexible base plate (mm) ðLbx � Lby � tbÞ (500� 700� 2)
Damping ratio zb ¼ 0:01

Actuator ma; Mass of each actuator 0.91 kg

Location of mount 1 on the base plate (mm) (250,350)

Location of mount 2 on the base plate (mm) (250,584)

Location of mount 3 on the base plate (mm) (156,584)

Location of mount 4 on the base plate (mm) (156,350)

Location of the primary force on the base plate (mm) (320,270)
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about 50.5Hz, with the second at about 132.1Hz. In the experimental results, the second
resonance occurs at about 140Hz and a third flexible mode of the equipment structure is observed
at about 190Hz which is not predicted by the simulation in the frequency range.
The theoretical and experimental plant responses of G11 at mount 1 with the equipment

structure installed on the flexible base are also compared in Fig. 6(b) with the individual resonance
frequencies listed in Table 3. The plant response is now a coupled response between the mounted
equipment and the base structures. The first three dominant peaks from the experiment
correspond to the rigid-body modes of the mounted equipment structure (heave motion at
14.0Hz, pitch motion at 16.8Hz, and roll motion at 18.0Hz), which are again reasonably close to
those predicted from the simulation (14.3, 16.0 and 17.2Hz). The peaks due to the flexible
equipment structure resonances are similar to those for the rigid base structure case. Other peaks

Fig. 6. Plant responses at mount 1 when only the actuator at mount 1 is active.

Table 2

Natural frequencies of the mounted flexible equipment structure on a rigid base

Simulation Experiment

Frequency Motion Mode shape Frequency Motion Mode shape

(Hz)
1 2 3 4

(Hz)
1 2 3 4

17.40 Heave + + + + 17.42 Heave + + + +

17.78 Pitch + — — + 17.98 Pitch + — — +

17.42 Roll + + — — 17.45 Roll + + — —

50.6 Flexible + — + — 50.5 Flexible + — + —

(Torsion) (Torsion)

132.1 Flexible + + + + 140.0 Flexible + — — +

(Heave) (Pitch)

189.6 Flexible + — + —

(Torsion)
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show the influence of the flexible base structure, which can be distinguished by comparison with
Fig. 6(a). These occur at about 40 and 62Hz, for example. Some discrepancies between the
experiments and simulations over 30Hz are due to the imperfect physical realisation of the
clamped–clamped boundary condition. The simulations are otherwise found to be in reasonable
agreement with the experimental results for all 16 elements of the plant response matrix G(jo).
The dynamics of the four-mount flexible equipment structure can be thus investigated to within a
satisfactory accuracy using the theoretical model.

4.3. Stability assessment

For the four-mount equipment structure, the ð4� 4Þ plant response matrix GðjoÞ has four
frequency-dependent eigenvalues. In order to be able to represent these eigenvalues as smooth
functions of frequency; however, some care needs to be taken in their calculation, as discussed in
the appendix. Fig. 7 shows the eigenvalue loci from both the simulated and measured responses
for the rigid base case, while Fig. 8 shows those for the flexible base case. Apart from some
differences in resonant amplitudes, the theoretical results match fairly well with those from the
experiment except at frequencies below 5Hz.This further validates the theoretical model
developed for the four-mount flexible equipment structure. It is clear that none of the eigenvalue
loci from the simulations cross the negative real axis, which indicates that the flexibility of the
equipment structure does not cause instability. This is to be expected for the rigid base case, as
discusses in Section 3, but is an important observation for the flexible base case. In practice, the
eigenvalue loci from the experimental data slightly cross the negative real axis in both cases
because of the phase shifts in the electronics of the control loop at very low frequencies. In
addition, relatively small loops are observed to cross the negative real axis in the middle of the
frequency band of analysis in Fig. 7. This is thought to result from the fact that the sensor and
actuator are not exactly collocated in the experiment, as shown in Fig. 5, and because of the
flexibility of the equipment structure. These loops cannot encircle the ð�1; 0Þ point, however, and
therefore do not threaten the stability of the control system. Therefore, good control stability is

Table 3

Natural frequencies of the mounted flexible equipment structure on a flexible base

Simulation Experiment

Frequency Motion Mode shape Frequency Motion Mode shape

(Hz)
1 2 3 4

(Hz)
1 2 3 4

14.3 Heave + + + + 14.0 Heave + + + +

16.0 Pitch + — — + 16.3 Pitch + — — +

17.2 Roll + + — — 18.0 Roll + + — —

50.5 Flexible + — + — 50.5 Flexible + — + —

(Torsion) (Torsion)

131.7 Flexible + + + + 142.1 Flexible + — — +

(Heave) (Pitch)

190.7 Flexible + — + —

(Torsion)
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expected for decentralized velocity feedback control in practice. The main threat to the control
stability arises from the phase shifts in the electronics of the control loop at low frequencies. The
comparison between the simulation and measured eigenvalue loci for the equipment on the
flexible base is also good as seen from Fig. 8. The smaller loops are now due to the flexible modes
of both the equipment structure and the base structure, but both occur on the right hand side of
the Nyquist plot.

5. Control performance

A single-channel velocity feedback control system is implemented on each of the four
mounts when the flexible equipment structure is mounted on either a rigid or the flexible

Fig. 8. Eigenvalue loci of the plant responses of the four-mounted active vibration.

Fig. 7. Eigenvalue loci of the plant responses of the four-mounted active vibration.
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base structure in the experiments. Each feedback channel has an equal, constant, feedback
control gain. The feedback control gain used here refers to the gain relating the secondary
actuator force to the control velocity in units of N s/m. This convention is adopted so that
the feedback control gain used in the experiments can be directly compared with that used in the
simulations and must account for the different gains used in the feedback loop in the
experiments, which comprises the charge amplifier gain Kca; the power amplifier gain Kpa; and the
sensitivity of the actuator Ka (equal to 0.91N/V). The sensitivity of the accelerometer and the time
constant of the integrator are directly taken into account by the charge amplifier when it is set
properly, so that Kca ¼ 100 V=ms: Therefore, the feedback control gain, in units of N s/m, is
calculated as

h ¼ KaKpaKca: ð17Þ

The control performance of the multichannel velocity feedback system was investigated with the
flexible equipment structure on both a rigid and a flexible base structure using different feedback
gains. As an example, a feedback gain of 364N s/m corresponds to a control gain of 40 from the
power amplifier.

5.1. Control performance on a rigid base structure

Fig. 9 shows the predicted values of the absolute velocities of the flexible equipment at the four-
mount locations for three different feedback gains when the mounted equipment structure is
installed on a rigid base structure, while the corresponding results from the experiments are shown
in Fig. 10. The responses before control are shown in thick lines and the responses after control in
thin lines. The three thin solid curves correspond to a series of feedback gains of 182, 910 and
2002N s/m, which are calculated from Eq. (17) for power amplifier gains of 2, 10 and 22,
respectively. The control performances from the simulation agree reasonably well with the
experimental results except at very low frequency due to the phase shifts in the electronic
equipment used in the experiment. Reductions of up to 30 dB are observed in vibration level
at the resonance frequencies of the rigid-body modes, and up to 20 dB reduction is observed
at the first equipment structure resonance frequency of 50.5Hz. Reductions in vibration level of
nearly 10 dB at the second and the third flexible resonance frequencies of the mounted equip-
ment structure are also obtained in the experiment, even though the simulations only predict
3–4 dB attenuation. The rigid-body resonances as well as the first flexible resonance are no
longer noticeable after control with the highest value of feedback gain. Some amplification of the
very low-frequency response of the flexible equipment structure can be observed in the
experiments due to the effect of instrumentation phase shifts. Good stability of the four-
channel control system on a rigid base is found as a maximum feedback control gain of 10 920N s/
m could be applied before the control system goes unstable. The gain margin of the four-
channel velocity feedback control system is thus about 14 dB even for the highest gain in
Fig. 10.
The overall control performance is further assessed using an estimate of the kinetic energy of

the equipment structure represented by the sum of the squared velocity signals at all four
mount positions. A comparison between the predicted and the experimental results is shown
in Fig. 11. It is evident that the multichannel decentralized velocity feedback control is
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effective in attenuating the vibration levels at all resonance frequencies of interest. In
particular, both theory and experiment give a reduction of up to 30 dB in the sum of squared
velocities at the resonance frequencies of the rigid-body modes of the mounted equipment
structure, and up to 20 dB at the first flexible frequency of 50.5Hz. As the passive isolation
performance increases, the control effect decreases and only 1–2 dB reductions are obtained
at 200Hz.

5.2. Control performance on a flexible base structure

The multichannel decentralized velocity feedback control is also implemented experimentally
when the mounted equipment structure is installed on a flexible base structure. Similar feedback

Fig. 9. Simulation results of the equipment velocity responses on a rigid base.
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gains as used in the case of a rigid base are applied in the multichannel control experiments on a
flexible base structure. The predicted velocity responses of the equipment structure before control
(thick lines) and after control (thin lines) at all four mount locations are shown in Fig. 12, while
the experimental results are illustrated in Fig. 13. Compared with Figs. 9 and 10 for the rigid base
case, it can be seen that the dynamics of the flexible base is now strongly coupled with that of the
equipment structure, and has a strong influence on the equipment velocity responses. The
vibration levels at the resonance frequencies of the mounted equipment structure are greatly
attenuated at all four mount positions. In particular, reductions in vibration level of up to 25 dB at
the rigid-body modes at around 17Hz, up to 20 dB at 50.5Hz, can be achieved with the highest
value of feedback gain in practice. For the vibrations at the base resonance frequencies, however,
different levels of attenuation are observed. At mounts 1 and 4, the vibration levels at all the base
plate resonance frequencies are effectively reduced both theoretically and experimentally.

Fig. 10. Experimental results of the equipment velocity responses on a rigid base.
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However, the vibrations at several base resonance frequencies are slightly amplified in practice as
seen from Fig. 13(c) at about 33Hz at mount 3. The experimental response is similar to that
predicted at the corresponding base resonance frequency of about 43Hz at mount 3 as seen in
Fig. 12(c). The velocity response at other positions, for example at the centre of the equipment
plate, can also be obtained from the simulation and an examination of these shows that a global
reduction in vibration level of the mounted equipment structure has been obtained.
The overall control performance of the active vibration isolation system is investigated using

the sum of the square values of the equipment velocities at each corner position as shown in
Fig. 14. The results before control are illustrated in thick lines and those after control in thin lines
both theoretically and experimentally with three different feedback gains. The predictions agreed
reasonably well with the experimental results, and clearly demonstrated that the vibration levels
could be effectively attenuated over the frequency band of interest. In particular, up to 25 dB
reductions in the sum of squared velocities at the rigid-body modes of the mounted equipment
structure, as well as up to 20 dB reduction at the resonances caused by the low order flexible
modes of the coupled base and equipment structure, can be achieved in practice. If the sum values
of squared velocities at a large number of points on the equipment plate are calculated, very
similar results to those shown in Fig. 14 are obtained. Thus the flexibility of the supporting base
structure has not significantly affected the control stability and it is found that the gain margin is
approximately the same as in the case of a rigid base structure.

6. Conclusions

Active vibration isolation has been investigated both theoretically and experimentally for a
four-mount equipment structure, in which electromagnetic actuators are installed in parallel with
each of four mounts placed between a flexible equipment and a supporting base structure.

Fig. 11. Sum of square values of velocities of the flexible equipment on a rigid base.
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Decentralized velocity feedback control is implemented experimentally to actively isolate the
vibration at frequencies up to 200Hz. With a rigid base, unconditional stability of the multi-
channel control system is theoretically guaranteed regardless of the flexibility of the equipment
structure. In practice, good control performance is observed with a gain margin of about 14 dB.
The phase shifts in the electronics of the control loop at low frequencies and the non-collocated
installation of the sensor and actuator due to the flexibility of the equipment and base structures
are found to be the main threats to the control stability in practice. It is also found that this robust
stability is carried over to the case when the base structure is a flexible plate. Control performance,
in terms of squared velocities of the equipment structure, demonstrates that the multichannel
active isolation system can effectively reduce the vibration of the equipment structure over a wide
frequency range.

Fig. 12. Simulation results of the equipment velocity responses on a flexible base.
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Appendix A. An algorithm to obtain the eigenvalues in order

There is an inherent numerical difficulty in obtaining a smooth plot of the frequency response
for the eigenvalues of a plant response matrix within MATLAB, because the built-in functions
automatically sort the calculated eigenvalues in a predefined order. For example, the eigenvalues
of a real symmetric matrix are sorted in an ascending order. A typical plot of the eigenvalues of
the experimental plant response matrix directly obtained from MATLAB is shown in Fig. 15. The
first eigenvalue is always assigned to be l1; the next is assigned to be l2; etc. As the individual
eigenvalues cross over, there is thus a physically unrealistic discontinuity in their slope. This
makes it very difficult to evaluate the stability of the multichannel control system. An algorithm
has therefore been developed to distinguish each of the smoothly varying eigenvalues from one
another, using the corresponding eigenvectors.

Fig. 13. Experimental results of the equipment velocity responses on a flexible base.
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The relationship between the plant response matrix GðjoÞ and its eigenvalue matrix OðjoÞ can
be expressed by

GðjoÞQðjoÞ ¼ QðjoÞXðjoÞ; ðA:1Þ

where XðjoÞ is a diagonal matrix of the eigenvalues liðjoÞ; and QðjoÞ is the matrix of the
corresponding eigenvectors of the plant response matrix GðjoÞ at the frequency o: At a frequency
o1; the eigenvectors may be denoted as q1ðjo1Þ; q2ðjo1Þ;y; qnðjo1Þ (in this paper, n ¼ 4), and have
the property that qHi ðjo1Þqiðjo1Þ is of order 1. Similarly, the eigenvectors at an adjacent frequency
o2 maybe be denoted as q1ðjo2Þ; q2ðjo2Þ;y; qnðjo2Þ; etc., although the ordering of the eigenvalues

Fig. 15. Magnitudes of the eigenvalues before data treatment.

Fig. 14. Sum of squared values of velocities of the flexible equipment on a flexible base.
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and hence of the eigenvectors may has changed. The inner product of each eigenvector at
frequency o1 with each eigenvector at frequency o2 is then calculated as

qHl ðjo1Þqmðjo2Þ ¼ alm: ðA:2Þ

If the two eigenvectors are similar, the magnitude of alm will be of order 1 and if they are
dissimilar, the magnitude of alm will be of order 0. In this way, similar eigenvectors and hence their
associated eigenvalues can be traced from one frequency to another. Fig. 16 shows the eigenvalues
calculated using this algorithm for the same experimental plant response matrix as was used to
generate Fig. 15, which are now smoothly varying functions of frequency and so can be used to
plot meaningful Nyquist plots in order to assess stability.
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